PART : MATHEMATICS

1
Area bounded by the curve $y=x^{2}$ and the line $y-x=2$ is
(1) $\frac{7}{2}$
(2) $\frac{9}{2}$
(3) $\frac{11}{2}$
(4) $\frac{13}{2}$

Ans. (2)
Sol.

$x^{2}-x-2=0$
$(x-2)(x+1)=0$
Required area $=\frac{1}{2}(3)(5)-\int_{-1}^{2} x^{2} d x$
$=\frac{15}{2}-\frac{1}{3}(8+1)$
$=\frac{15}{2}-3=\frac{9}{2}$ sq. unit
2. If $A_{3 \times 3}=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$ and $M=A+A^{2}+A^{3}+\ldots \ldots . A^{20}$, then the sum of all the elements of M is :
(1) 1540
(2) 1580
(3) 2020
(4) 1640

Ans. (3)
Sol. $\quad A^{2}=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right]$
$A^{3}=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 3 & 6 \\ 0 & 1 & 3 \\ 0 & 0 & 1\end{array}\right]$
$T_{n}=1+2+\ldots \ldots .+n=\frac{n(n+1)}{2}=\frac{20 \times 21}{2}=210$

$$
\begin{aligned}
& S_{n}=\frac{1}{2}\left(\frac{n(n+1)(2 n+1)}{6}+\frac{n(n+1)}{2}\right) \\
& =\frac{n(n+1)}{4}\left(\frac{2 n+1}{3}+1\right) \\
& =\frac{n(n+1)(n+2)}{6}=\frac{20 \times 21 \times 22}{6}=1540
\end{aligned}
$$

$$
M=\left[\begin{array}{ccc}
1+1 \ldots .20 \text { times } & 1+2+3+\ldots .20 & s_{n} \\
0 & 1+1+1 \ldots .20 \text { times } & 1+2+3+\ldots .20 \\
0 & 0 & 1+1+1 \ldots .20 \text { times }
\end{array}\right]
$$

$$
M=\left[\begin{array}{ccc}
20 & 210 & 1540 \\
0 & 20 & 210 \\
0 & 0 & 20
\end{array}\right]
$$

Sum of elements of $M=3(20)+420+1540=2020$
3. A circle touches y-axis at $(0,6)$ and has x-intercept equal to $6 \sqrt{5}$ then radius of the circle is :

Ans. 9
Sol.

$$
\begin{aligned}
& A D=3 \sqrt{5} \\
& C A^{2}=C D^{2}+A D^{2} \\
& =36+45 \\
& C A^{2}=81 \\
& C A=9 \\
& \Rightarrow r=9
\end{aligned}
$$

4. Three vectors $\vec{a}, \vec{b}, \vec{c}$ with magnitude $\sqrt{2}, 1$ and 2 respectively follows the relation $\vec{a}=\vec{b} \times(\vec{b} \times \vec{c})$.

The acute angle between the vectors $\vec{b} \& \vec{c}$ is θ. Then the value of $(1+\tan \theta)$ is :
Ans. 2
Sol. $\vec{a}=\vec{b} \times(\vec{b} \times \vec{c})$
$\vec{a}=(\vec{b} \cdot \vec{c}) \vec{b}-(\vec{b} \cdot \vec{b}) \vec{c}$
$\vec{a}=(|\vec{b}||\vec{c}| \cos \theta) \vec{b}-|\vec{b}|^{2} \vec{c}$
$\vec{a}=(2 \cos \theta) \vec{b}-\vec{c}$
$\vec{a} \cdot \vec{b}=2 \cos \theta-2 \cos \theta$
$\Rightarrow \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=0$
$\vec{a} \cdot \vec{a}=2 \cos \theta(\vec{b} \cdot \vec{a})-\vec{c} \cdot \vec{a}$
$\vec{c} \cdot \vec{a}=-2$
$\vec{a} \cdot \vec{c}=2 \cos \theta(\vec{b} \cdot \vec{c})-4$
$-2+4=2 \cos \theta \times 2 \cos \theta$
$\cos ^{2} \theta=\frac{1}{2}$
$\cos \theta=\frac{1}{\sqrt{2}}$
$\theta=45^{\circ}$
So, $(1+\tan \theta)=2$
5. Two square matrices $A \& B$ are such that $A^{2}+B^{2}$ is invertible and $A^{5}=B^{5}, A^{3} B^{2}=B^{3} A^{2}$. Then the value of $\left|A^{3}-B^{3}\right|$ is :
Ans. 0
Sol. $\quad\left(A^{3}-B^{3}\right)\left(A^{2}+B^{2}\right)=A^{5}-B^{5}+A^{3} B^{2}-B^{3} A^{2}=0$
Since $\left|A^{2}+B^{2}\right| \neq 0 \Rightarrow\left|A^{3}-B^{3}\right|=0$
6. Evaluate $\lim _{x \rightarrow 0} \frac{x}{\sqrt[8]{1-\sin x}-\sqrt[8]{1+\sin x}}$
(1) 0
(2) -4
(3) 8
(4) 2

Ans. (2)
Sol. Rationalize denominator three times
$\lim _{x \rightarrow 0} \frac{\left.x\left\{(1-\sin x)^{1 / 8}+(1+\sin x)^{1 / 8}\right)\left((1-\sin x)^{1 / 4}+(1+\sin x)^{1 / 4}\right\}(1-\sin x)^{1 / 2}+(1+\sin x)^{1 / 2}\right\}}{(1-\sin x-1-\sin x)}$
$\lim _{x \rightarrow 0} \frac{8 x}{-2 \sin x}$
$=-4$
7. If two given APs are $\tan \frac{\pi}{9}, x, \tan \frac{7 \pi}{18}$ and $\tan \frac{\pi}{9}, y, \tan \frac{5 \pi}{18}$. Then the value of $|x-2 y|$ is :

Ans. 0
Sol. $\left|\frac{1}{2}\left(\tan \frac{\pi}{9}+\tan \frac{7 \pi}{18}\right)-\tan \frac{\pi}{9}-\tan \frac{5 \pi}{18}\right|$
$\because 2 x=\tan \frac{\pi}{9}+\tan \frac{7 \pi}{18}$ and $2 y=\tan \frac{\pi}{9}+\tan \frac{5 \pi}{18}$

$$
\begin{aligned}
& \left|\frac{1}{2}\left(\cot \frac{\pi}{9}-\tan \frac{\pi}{9}\right)-\tan \frac{5 \pi}{18}\right| \\
& \left|\frac{1}{2} \times 2 \cot \frac{2 \pi}{9}-\tan \frac{5 \pi}{18}\right| \\
& \left|\cot 40^{\circ}-\tan 50^{\circ}\right|=0
\end{aligned}
$$

8. Let $f(x)$ be a twice differential function defined as $f(x)=\int_{a}^{x} g(t) d t$ and $f(x)$ lies between a and b. If $f(x)$ has 5 roots, then the minimum number of roots of the equation $g^{\prime}(x) g(x)=0$ is :
(1) 12
(2) 3
(3) 5
(4) 7

Ans. (4)
Sol. $\quad f^{\prime}(x)=g(x)$
$g^{\prime}(x)=f^{\prime \prime}(x)$
$f(x)=\int_{a}^{x} g(t) d t$
$g(x)=f^{\prime}(x)$
$g^{\prime}(x)=f^{\prime \prime}(x)$
$g(x) \cdot g^{\prime}(x)=f^{\prime}(x) f^{\prime \prime}(x)$
Graph of $f(x)$ can be drawn as

If $f(x)=0$ has atleast 5 real roots
$f^{\prime}(x)=0$ has atleast 4 real root
$f^{\prime \prime}(x)=0$ has atleast 3 real root
$f^{\prime}(x) f^{\prime \prime}(x)=0$ has atleast 7 real root
$g(x) g^{\prime}(x)=0$ has atleast 7 real root
9. If $\left(x+x^{3}\right) d y=\left(y+y x^{2}+x^{3}\right) d x$ and $y(1)=0$, then $y(2)$ is:
(1) $\ln \left(\frac{17}{2}\right)$
(2) 0
(3) $\ln \left(\frac{5}{2}\right)$
(4) $\ln \left(\frac{2}{5}\right)$

Ans. (3)
Sol. $\frac{d y}{d x}=\frac{y+y x^{2}+x^{3}}{x+x^{3}}$
$\frac{d y}{d x}-\frac{y}{x}=\frac{x^{2}}{x^{2}+1}$
I.F $=e^{-\int \frac{1}{x} d x}=\frac{1}{x}$
$y\left(\frac{1}{x}\right)=\int \frac{x^{2}}{x^{2}+1}\left(\frac{1}{x}\right) d x$
$\Rightarrow \frac{\mathrm{y}}{\mathrm{x}}=\frac{1}{2} \ln \left(1+\mathrm{x}^{2}\right)+\ln \mathrm{c}$
$\Rightarrow y=\frac{x}{2}\left(\ln \left(1+x^{2}\right)+\operatorname{lnc}\right)$
Now $y(1)=0$
$\Rightarrow 0=\frac{1}{2}(\ln 2+\operatorname{lnc})$
$\ln 2 \mathrm{c}=0$
$\Rightarrow c=\frac{1}{2}$
Now $y(2)=\frac{2}{2}\left(\ln 5+\ln \frac{1}{2}\right)$
$y(2)=\ln \frac{5}{2}$
10. If two sides of a parallelogram are $4 x+5 y=0$ and $7 x+2 y=0$. If one of the diagonals is $11 x+7 y=9$ then the other diagonal passes through the point :
(1) $\left(\frac{1}{3},-\frac{4}{3}\right)$
(2) $(1,1)$
(3) $(2,3)$
(4) $\left(\frac{2}{3}, \frac{4}{3}\right)$

Ans. (2)
Sol. $\quad A C: 11 x+7 y=9$

$O A: 4 x+5 y=0$
OC: $7 x+2 y=0$
$\Rightarrow \mathrm{A}\left(\frac{5}{3}, \frac{-4}{3}\right)$ and $\mathrm{C}\left(\frac{-2}{3}, \frac{7}{3}\right) \Rightarrow \mathrm{M}=\left(\frac{1}{2}, \frac{1}{2}\right)$
equation of $O B \Rightarrow y=x$
11. The point $P(a, b)$ undergoes following transformation to a new co-ordinate $P^{\prime}\left(-\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$
(i) Reflection about $y=x$
(ii) Translation through 2 units in the positive direction of x-axis
(iii) Rotation through an angle $\frac{\pi}{4}$ in anti clockwise sense about the origin

Then the value of $2 a+b$ is :
(1) 1
(2) 3
(3) 4
(4) 9

Ans. (4)
Sol.

Using rotation theorem
$\frac{-1}{\sqrt{2}}+\frac{7}{\sqrt{2}} i=\{(b+2)+a i\}\left\{\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right\}$
$\frac{-1}{\sqrt{2}}+\frac{7}{\sqrt{2}} i=\left(\frac{b+2}{\sqrt{2}}-\frac{a}{\sqrt{2}}\right)+i\left(\frac{b+2}{\sqrt{2}}+\frac{a}{\sqrt{2}}\right)$
$b-a+2=-1 \quad \ldots \ldots$. (i)
$b+2+a=7$
Using equation (i) \& (ii)
$a=4, b=1$
$\Rightarrow 2 \mathrm{a}+\mathrm{b}=9$
12. If $\alpha^{1 / 5}$ and $\beta^{1 / 5}$ are roots of the equation $8 x^{2}+b x+c=0$ where $\alpha=\max (26 \sin 3 x+8 \cos 3 x)$ and $\beta=\min \left(2^{6 \sin 3 x+8 \cos 3 x}\right)$. Then the value of $|b-c|$ is :

Ans. (42.0)
Sol. $\alpha=\max \left(2^{6 \sin 3 x+8 \cos 3 x}\right)=2^{10}$
$\beta=\min \left(2^{6 \sin 3 x}+8 \cos 3 x\right)=2^{-10}$
$\alpha^{1 / 5}=2^{2}$ and $\beta^{1 / 5}=2^{-2}$
$\Rightarrow 8 x^{2}+b x+c=0 \underbrace{\alpha^{1 / 5}}_{\beta^{1 / 5}}$
$\Rightarrow \alpha^{1 / 5}+\beta^{1 / 5}=4+\frac{1}{4}=\frac{17}{4}=\frac{-b}{8}$
$b=-34$
$=\alpha^{1 / 5}+\beta^{1 / 5}=1=\frac{C}{8} \Rightarrow c=8$
$|b-c|=42$
13. For an ellipse E, centre lies at the point $(3,-4)$, one of the foci is at $(4,-4)$ \& one of vertices is at $(5,-4)$. If the equation of tangent on the ellipse E is $m x-y=4(m>0)$. The value of $5 m^{2}$ is :
(1) 3
(2) 5
(3) 9
(4) 7

Ans. (1)
Sol. Equation of the ellipse is $\frac{(x-3)^{2}}{a^{2}}+\frac{(y+4)^{2}}{b^{2}}=1$
$\frac{4}{a^{2}}=1 \Rightarrow a^{2}=4$
$a-a e=1$
$2-2 e=1 \Rightarrow e=\frac{1}{2}$
$b^{2}=a^{2}-a^{2} e^{2}=4-4\left(\frac{1}{4}\right)=3$
$\Rightarrow \frac{(x-3)^{2}}{4}+\frac{(y+4)^{2}}{3}=1$
Tangent $\rightarrow y+4=m(x-3) \pm \sqrt{4 m^{2}+3}$
Given tangent is $y=m x-4$
$3 m= \pm \sqrt{4 m^{2}+3} \Rightarrow 9 m^{2}=4 m^{2}+3$
$5 m^{2}=3$
14. The number of solutions of the equation $e^{4 x}-e^{3 x}-4 e^{2 x}-e^{x}+1=0$ is :

Ans. (2)
Sol. $\quad e^{4 x}-e^{3 x}-4 e^{2 x}-e^{x}+1=0$
$e^{2 x}-e^{x}-4-\frac{1}{e^{x}}+\frac{1}{e^{2 x}}=0$

JEE MAIN-2021 | DATE : 27-07-2021 (SHIFT-2) | PAPER-1 | MEMORY BASED

$\Rightarrow\left(e^{x}+\frac{1}{e^{x}}\right)^{2}-2-\left(e^{x}+\frac{1}{e^{x}}\right)-4=0$
$\Rightarrow\left(e^{x}+\frac{1}{e^{x}}\right)^{2}-\left(e^{x}+\frac{1}{e^{x}}\right)-6=0$
Put $e^{x}+\frac{1}{e^{x}}=t$
$\Rightarrow t^{2}-t-6=0$
$t=3, t=-2$ (not possible)
$\Rightarrow \mathrm{e}^{\mathrm{x}}+\frac{1}{\mathrm{e}^{\mathrm{x}}}=3$
$e^{2 x}-3 e^{x}+1=0$
Put $e^{x}=p$
$\Rightarrow \mathrm{p}^{2}-3 \mathrm{p}+1=0$
\Rightarrow number of solutions $=2$
15. If $f(x)=\left\{\begin{array}{ccc}\max (\sin t) & ; 0 \leq t \leq x, x \in[0, \pi] \\ 2+\cos x & ; & x>\pi\end{array}\right.$ then the number of points where of $f(x)$ is not continuous or non-differentiable.
(1) 0
(2) 1
(3) 2
(4) infinite

Ans. (1)
Sol.

Critical point $\frac{\pi}{2} \& \pi$
At $x=\frac{\pi}{2}$
$f(x)$ is continuous and differentiable at $x=\frac{\pi}{2} \Rightarrow$ LHD $=$ RHD $=0$
at $x=\pi$
$f(x)$ is again continuous and differentiable at $x=\pi \Rightarrow L H D=R H D=0$
So, number of dis-continuous and non differentiable point $=0$
16. If $f(x)=\frac{1-\sin x+\cos x}{1+\sin x+\cos x}, x \neq \pi$ then the value of $f(\pi)$ so that $f(x)$ is continuous.
(1) 1
(2) 0
(3) -1
(4) 2

Ans. (3)
Sol. Since $f(x)$ is continuous at $x=\pi$
$\Rightarrow f(\pi)=\lim _{x \rightarrow \pi} \frac{1-\sin x+\cos x}{1+\sin x+\cos x}$
$=\lim _{x \rightarrow \pi} \frac{2 \cos ^{2} \frac{x}{2}-2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}+2 \sin \frac{x}{2} \cos \frac{x}{2}}$
$=\lim _{x \rightarrow \pi} \frac{\cos \frac{x}{2}-\sin \frac{x}{2}}{\cos \frac{x}{2}+\sin \frac{x}{2}}=\frac{0-1}{0+1}=-1$
So $f(\pi)=-1$
17. Let $\left(3^{\frac{1}{6} \log _{3}\left(22^{x-1}+7\right)}+3^{\frac{1}{8} \log _{3}\left(5^{x-1}+1\right)}\right)^{10}$ is expanded in the increasing power of $3^{\frac{1}{8} \log _{3}\left(5^{x-1}+1\right)}$. If $9^{\text {th }}$ terms of the expansion is 180 then the value of x is :
(1) -1
(2) 1
(3) 0
(4) 2

Ans. (2)
Sol. $\quad 9^{\text {th }}$ terms of the expansion $\left(\left(25^{x-1)}+7\right)^{\frac{1}{6}}+\left(5^{x-1}+1\right)^{\frac{1}{8}}\right)^{10}$ is
${ }^{10} \mathrm{C}_{8}\left(\left(25^{x-1)}+7\right)^{\frac{2}{6}} \times\left(5^{x-1}+1\right)^{\frac{8}{8}}\right)=180$
$\Rightarrow \frac{10 \times 9}{2}\left(\left(25^{x-1)}+7\right)^{\frac{2}{3}} \times\left(5^{x-1}+1\right)\right)=180$
After solving x :
$x=1$

